

### **Disjoint Set Analysis**

# **Learning Objectives**

- Understand the Iterated log function
- 2. Know absolute best runtime of find for disjoint sets



## **Iterated Logarithm**

#### The **iterated log** function:

The number of times you can take a log of a number.

$$\begin{aligned} \log^*(n) &= \\ 0 &, n \leq 1 \\ 1 + \log^*(\log(n)), n > 1 \end{aligned}$$

| n            | log*(n) |
|--------------|---------|
| 1            | 0       |
| 2            | 1       |
| 4            | 2       |
| 16           | 3       |
| 65536 (2^16) | 4       |
| 2^65536      | 5       |



# **Iterated Logarithm**

| n            | log*(n) |
|--------------|---------|
| 1            | 0       |
| 2            | 1       |
| 4            | 2       |
| 16           | 3       |
| 65536 (2^16) | 4       |
| 2^65536      | 5       |

Number of atoms in the universe (2^266)

Number of possible games of chess (2^400)







### **Inverse Ackermann Function**

 $O(m^* \mathbf{c}(m,n))$ 

(m,n) grows much slower than log\*(n)

Therefore, the big O of find will be \_\_\_\_\_

